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Abstract

Flow injection techniques have been used almost exclusively for chemical
analysis of homogeneous samples. On the other hand, field-flow fractionation is
designed to separate phases in a flowing heterogeneous sample through their
differing response to applied force fields. In this work we show that controlled
phase separation can be achieved and successfully modeled in flow injection
systems. The force that separates the phases is generated intrinsically within the
flow tube by the inertial effects of the flow itself.

INTRODUCTION

The ingenious and varied implementations of field-flow fractionation
(FFF) introduced by Giddings and his co-workers (/~4) have been used
to separate particles ranging from submicron up to 100 um in diameter.
In the presence of all but the highest transverse fields, the description of
the dynamics of larger particles in Poiseuille flow is very complicated due
to the nonlinearity of the Navier-Stokes equation. Low-field steric FFF
experimental results deviate from theoretical expectations, and an
anomalous retention factor related to velocity-dependent lift forces was
invoked (5). Recently, however, theoretical studies by McTigue et al. (6)
succeeded in explaining the nature of the diverse cross-flow forces
experienced by rigid particles in plane Poiseuille flow. This recent theory
is here applied to particle separation in a Hagen-Poiseuille flow. We
show that the intrinsic drag and lift experienced by large particles in low
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Copyright © 1989 by Marcel Dekker, Inc.



12:56 25 January 2011

Downl oaded At:

326 AFROMOWITZ AND SAMARAS

transverse field environments, such as normal gravitational fields, lead to
very efficient fractionation with systems compatible with those used in
flow injection analysis (7).

BACKGROUND

The basic approach of field-flow fractionation (FFF) may be sum-
marized as follows: A dilute separable phase flows through a two-
dimensional Poiseuille flow channel which features a large aspect ratio to
permit use of one-dimensional expressions. A field which interacts with
the separable phase is placed so as to cause drift of that phase in the
direction parallel to the narrow dimension of the flow channel. The field-
induced drift causes the separable phase to concentrate, at steady state,
along one of the broad faces of the channel in a roughly exponential
profile, whose characteristic exponential distance is given by D/U, where
D is the diffusivity of the separable phase in the surrounding solvent and
U is the field-induced average drift velocity of the separable phase. The
flow in the channel is assumed to be laminar, and therefore the separable
phase is transported down the channel at different velocities, depending
upon the velocity of the solvent at the position of the concentrated
separable phase. Demonstrations of this technique using gravitational,
centrifugal, electrical, magnetic, cross-flow, thermal, and chemical fields
have been published (8).

In all of the following, we consider slow flow in a channel of circular
cross-section of radius R. The particle density is assumed small enough
so that the fluid viscosity is not affected. The velocity of the fluid at radius
r is given in the absence of particles by

vy(ry = 2(VX(R* - r’)/R? (1)

where (V) is the average flow velocity.

The interaction of particles and the carrier fluid can yield unexpected
effects in laminar flow. In the first place, a particle does not move
downstream (chosen to be the z-direction) at the velocity of the streamline
at its center (9). In the absence of all other effects, particles lag behind the
surrounding fluid with the difference in longitudinal velocity, Av,,
between the fluid at the position of the center of the particle and the
particle itself, given approximately by (10, 11)

Av, = (V)(d,/R)/6 )
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where d, is the diameter of the particle, and d, < R.

This relative velocity between fluid and particle can be significantly
modified if the flow direction is vertical and the particle is not neutrally
buoyant. In that case, Av, must be augmented or diminished by the
Stokes settling velocity,

v, = d;gAp/18u 3)

depending on the sense of flow, where g is the acceleration of gravity, Ap
is the difference in density between the particle, p,, and the fluid, p;,and p
is the viscosity of the fluid.

The relative longitudinal velocity between fluid and particle gives rise
to a force on the particle in the radial direction. This effect, discussed
initially by Saffman (I2), forces particles toward the center of the tube if
the particles lag the fluid, and toward the tube walls if the particles lead
the fluid. The force increases with the square root of the radial position of
the particle, r,. Applying the Stokes coefficient to the Saffman force leads
to the following expression for the radial velocity component attributable
to this effect:

vs,(r,) = —0.3427Av,(r*Re)d,/R (4)

where r* = r,/R, the normalized particle radial position, and where Re is
the tube Reynolds number, given by Re = p,{V)R/p. In the event that Av,
is given by Eq. (2), which is appropriate for flow in a horizonta! tube, the
Saffman velocity is given by

vs(r,) = —0.0571{V)(r*Re)"(d,/R)’ (5)

Yet another transverse force has been noted. This force, investigated
experimentally by Segré and Silberberg (/3) and Aoki et al. (/4), was
described theoretically by Ho and Leal for plane flows (15). The force
depends on the square of the flow velocity, and in a cylindrical flow tube
the force is positive (toward increasing radius) for r, less than about 0.6R,
and negative for r, greater than that value. Thus, the Ho and Leal effect
pushes particles toward a thin annular region of the tube at a radius of
about 0.6R. Aoki called this the tubular pinch effect.

In the absence of an expression for the Ho and Leal force in Hagen-
Poiseuille flow, we adapt Ho and Leal’s expression (/5) for this transverse
force from that given for the plane Poiseuille flow situation. In our
adaptation we imagine the fluid velocity distribution to have the same
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maximum at the center of both the plane and cylindrical channels, V,,.
In the plane flow case, the average flow velocity is equal to 2V, /3. In our
cylindrical case, (V) = V,,,./2. This difference in the definition of the
average velocity requires that the Ho and Leal expression be modified by
a factor of (4/3)2. This modification maintains the transverse shear field
but neglects the curvature of the streamlines. It leads to an approximate
radial velocity attributable to this force given by

vudr,) = —0.106{V)Re(d,/RY’ H(r*) (6a)
where
H(r*) = r*(G,r* — G,) (6b)

G, and G, are themselves functions of *, and were tabulated by Ho and
Leal (15). The function H(r*) is shown in Fig. 1. H(0) = 0, an unstable
point for a particle, and H(»*) < 0 until r* = G,/G,. This occurs at
approximately * = 0.6. For larger arguments, H(r*) > 0.

When a flow tube is placed horizontally, particles carried by the fluid
in this tube will be moved in the radial direction by both vg, and vy,. In
addition, they will rise or fall vertically in the tube according to the Stokes

10

1

H(r*)l
01

H(@*) <0

0.0 0.2 0.4 0.6 0.8 1.0
normalized radius, r*

FIG. 1. The magnitude of the function H(r*) as a function of the normalized tube radius, 7*.
See Eqgs. (6a) and (6b) in text.
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settling velocity. Within a certain range of system parameters, if the
particles are denser than the fluid, and if the combined S and H forces are
strong enough to overcome gravity, the particles will be pinched into a
narrow crescent region below the center of the tube at 7* > 0.6, ultimately
arriving at an equilibrium normalized radius, r,,, directly below the tube
center. Particles lighter than the fluid will rise to a point above the tube
center in a similar way. Particles so trapped at r,, will be transported
longitudinally down the tube at the stream velocity less Av,, that is,

Uplra) = 2{V)(1 = r2) ~ Av, )

Particles unable to be trapped will eventually be forced against the tube
wall.

In contrast to the theory of FFF, we do not explicitly include the effects
of diffusion caused by Brownian motion of the particles. We limit our
investigation to large particles for which the diffusive velocity is
negligible compared to the cross-flow velocities introduced above.

DISCUSSION

With regard to the geometry of the flow tube shown in Fig. 2, it is clear
that the velocity of a particle v, = (v,,, v,,, v,,) is a function of its position
(x,,y,) within the cross section of the flow tube. Thus, from the equations
provided above,

Upx = 0, )X, /7, (8a)
U, = 0(r,)y,/r, — U, (8b)
and
v, = 2{V)(1 = r*?) — Av, (8¢)
where
vr,) = vslr,) + valr,)
and

r, = (x2 + y)"?



12:56 25 January 2011

Downl oaded At:

330 AFROMOWITZ AND SAMARAS

y-azus
Flow tube, radius R

/- X-axis

z-axis
(fluid flow direction)

y —————————
T_. z — Velocity profile of

Hagen-Poiseuille flow

FI1G. 2. Geometry of the flow tube.

Given any initial posiiion of a particle, say X, = (xg, yo, 2o), the trajectory
of the particle is obtainable in principle by integration:

x(2) = fvpdt + X,

The complexity of these equations precludes their integration in closed
form. Thus, we have integrated them digitally. We seek the time, T, at
which a particle initially positioned randomly within the cross section of
the tube at z = 0 will travel a distance L down the tube. The particle is
constrained to remain entirely within the tube, therefore r, <R — d,/2. As
T will vary with initial position, we generated a histogram of arrival times
for particles whose initial positions were uniformly distributed across the
z = 0 plane. Particles were placed initially on a grid with spacing R/10,
the grid being offset R/20 in both the x and y directions from the center of
the tube. This grid yields 316 starting points within the cylinder on the
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z =0 plane, of which only 158 give unique results due to left-right
symmetry. Figure 3 shows an example of this histogram of arrival times.
The parameters used in this calculation are R = 0.0381 cm, L = 231.5cm,
p = 001018 P, p, = 1.0046 g/cm’, p, = 1.05 g/cm’, and (V) = 4.56 cm/s.
Arrival times are shown for particles of diameters 40, 50, 60, 70, 80, 90, and
100 um. We note that the larger particles arrive earlier, and with a
narrower distribution compared to the smaller particles. The ordinate of
the distribution plot is in units of % of particles arriving per Y%-s time
interval. Due to the finite number of particles used in our simulation, the
distributions are not smooth. However, we have calculated the mean
arrival time (7)) and the standard deviation (AT,) as a function of
particle diameter. These results are shown in Figs. 4 and 5. The data
points shown on these figures will be discussed in the following
section.

In order to gain insight into this behavior, we note that the trajectory of
a particle consists of two phases. In the first phase, the particle moves
transverse to the flow from its initial position to either r,, or to the tube
wall while at the same time moving downstream at velocities determined
by the particle’s instantaneous radial position. In the second phase, the
particle is carried downstream at the constant velocity given by Eq. (8c)
with r* = r,, for trapped particles and r* = 1 — (d,/2R) for particles forced
against the wall of the cylinder. Some particles never achieve the second

0T  d,-100um
50 1
90 um

401 ﬂ

particle i 80 pm

arrival 30

probabilities
20 1
101 //
0 = f y ¥ t '
40 45 50 55 60 65

arrival time, sec

FiG. 3. Calculated arrival distributions for spherical particles of different diameters, d,,. The
flow system parameters are given in the text.
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- 50t
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FiG. 4. Mean arrival times, {T). for arrival distributions shown in Fig. 3. The data point
shows the mean arrival time for polystyrene particles in a flow system described by the
given system parameters. The mean diameter of the particles was 90.7 um according to the

AT, sec

0

manufacturer.

calculation
data

40 50 60 70 80 9 100

particle diameter, um

FI1G. 5. Calculated standard deviations, AT,, of the particle arrival distributions shown in
Fig. 3. The data point shows the measured standard deviation, AT,, of the arrival

distribution for our 90.7 um particles.
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phase. This latter situation occurs if the combined transverse velocity
components given by Eqs. (8a) and (8b) are so small that the particle
doesn’t reach its final radial position before the particle passes z = L. If
the majority of the particles initially distributed uniformly across the (x, y,
0) plane never reach the second phase of their trajectory, then the arrival
distribution will be very broad, approximating the arrival function of the
carrier fluid itself (/6).

For Re > 1, the Ho and Leal force exceeds the Saffman force for
r* > 0.6. Therefore, neglecting the Saffman velocity, we can write an
approximate relationship derived by setting Eq. (8b) equal to zero for a
particle which has come to its equilibrium radial position along the
y-axis:

|Ap|) 2
—|R
g( P

~_ NV /7
Hire) = 1.908{V>d, ©)

If the right side of this equation is less than about 10, a value of r,, may
be found by reference to Fig. 1. If r, < 1 — (d,/2R), then the particle will
be trapped by the tubular pinch effect. If the inequality does not hold, or
if a solution to Eq. (9) cannot be found, then the particle is forced to the
wall of the tube.

Equation (9) shows that larger particle diameters lead to smaller values
of H(r.), which are satisfied by values of 7, closer to 0.6. The downstream
velocity is greater at smaller tube radii, therefore larger particles have a
larger downstream velocity once they achieve the second phase of their
trajectory.

The time necessary to complete the first phase of the trajectory is
smaller for particles having larger Stokes settling velocity, v,. Thus, for
particles of a given density, larger particles settle first, and achieve phase
two more quickly than smaller particles. This affects the width of the
arrival distribution function, since for particles having different initial
positions, the variable distance traveled downstream during phase one
causes the variance in the arrival distribution in the first place.

One can vary any of the parameters and calculate the resulting
arrival distributions. One of these possibilities is shown in Fig. 6,
where the values for R, L, p, p;, and p, are the same as given
above, d, is set equal to 90.7 um, and we have chosen {V) equal to
3,35, 4,45, and 5 cm/s. The mean arrival times for these distributions
are shown in Fig. 7.
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50 V> = 5.0 cm/sec
40 t 4.5
4.0
particle 0
arri\fa.l' 3.5
probabilities 20 +
3.0
10 1

Ll

20 30 40 50 60 70 80 90 100
arrival time, sec

F1G. 6. Calculated arrival distributions for 90.7 pm particles for different average flow
velocities. All other system parameters remain the same.

90

80 ¢
m]

70 \icula.tion O = data
60

501

>, sec

401

30 + ' '
3.0 35 4.0 4.5 5.0

V>, cm/sec

FIG. 7. Mean arrival times, (T, for particle distributions shown in Fig. 6. The data points
show the measured mean arrival times for our 90.7 um polystyrene particles at the indicated
average flow velocities.
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EXPERIMENTAL RESULTS

Pinch field-flow fractionation experiments were conducted in an
apparatus shown schematically in Fig. 8. A carrier fluid consisting of
0.9% saline was forced through a substantially horizontal coil of Tygon
microbore tubing with an inner diameter of 0.762 mm. The flow system
was held at constant temperature in a water bath. A constant pressure
drive for the carrier fluid was arranged using a pressurized vessel.
Samples of polystyrene spheres of approximately 10% by volume were
prepared in similar saline fluid, with the addition of a small amount of
detergent. These samples were injected into the flow system using a
tandem arrangement of solenoid pinch valves operating on silicone
pinch tubing, which controlled the flow of sample and carrier stream
through a “n”-shaped injector valve. The injector fitting was machined
from a small block of clear acrylic plastic, and upon activation of the
solenoids, a constant sample volume of approximately 5 uL was injected
into the flow system. '

The particle sensor was placed 231.5 cm down the tube, and consisted
of a simple ac impedance cell. A frequency of 50 kHz was used, and the
change in resistance of the fluid moving through the cell was recorded as
a function of time after sample injection, using a lock-in amplifier to pick
out the in-phase component of the impedance, and a chart recorder.
When the cell contained a volume of the nonconducting particles, an
increased resistance was measured compared to that of the carrier fluid.

Injector

Nommally " ",

Closed

To Vacuum
Waste

Lock-in
Amplifier

Chart
Recorder

Conductivity
Cell

To Waste

FIG. 8. Schematic diagram of experimental system.
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Changes in cell resistance on the order of 0.005%, corresponding to less
than 0.1% solids, were routinely measured by this system.

Figure 9 shows a typical signal (solid curve) from our apparatus, after
injection of a sample containing polystyrene spheres characterized by the
manufacturer as having a mean diameter of 90.7 um. The mean fluid
velocity was 4.56 cm/s. The signal pulse shown in Fig. 9 is accompanied
by two calculated particle arrival distributions (dotted curves) reproduced
from Fig. 3, one for 100 um particles and the second for 80 pm particles.
The three curves have been normalized to the same area. Note that the
parameters used to calculate the distributions shown in Fig. 9 correspond
to the experimental situation described above.

The experimental signal in Fig. 9 indicates a mean particle arrival time
0f 43.9 s, which is also shown as the data point on Fig. 4. We note that the
measured mean arrival time is fairly close to that predicted from our
theory for 90.7 um particles. A variation in any one of the many system
parameters, or a slight timing error on our chart recorder could be
responsible for the observed 2.5% discrepancy between measured and
predicted arrival times. The data points in Fig. 7 show measured mean
arrival times for these 90.7 pm particles in the same system at different
values of (V). There is quite a good correspondence between experiment
and theory.

Another interesting observation is the fact that the width of the signal

601
50 § 100 um

it (calculated)
40 i

relative 30 ¢
particle
arrival
signal 207

* 80 um
{ (calculated)

10
measured signal

0

38 40 42 44 46 48 50
arrival time, sec
F1G. 9. Measured arrival distribution (solid curve) for 90.7 um particles with calculated

arrival distributions for particles of 100 and 80 pm. All the curves were normalized to equal
area, and the system parameters reflect the experimental situation.
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pulse is much larger than expected for particles of this size. Figure 5
shows the measured standard deviation of the signal pulse (AT,, = 1.27 s)
obtained at (V) = 4.56 cm/s for 90.7 um particles superimposed on the
calculated standard deviation of the arrival time distribution for this
experimental situation. Analysis of this discrepancy follows.

ANALYSIS OF SIGNAL PULSE WIDTH

The variance (square of the standard deviation) of a measured signal
pulse is caused by three factors. The first is the intrinsic variance which
results when particles of the same size, but distributed initally in a
uniform fashion across the (x, y, 0) plane of the flow tube, settle down to
r,, at different times, thereby arriving at z = L with a characteristic arrival
width. This intrinsic component of the arrival distribution width was
calculated previously, and is shown in Fig. 5. For the experimental
situation under consideration, with 4, = 90.7 ym, AT, = 0.33 s.

The second contribution to the variance of the measured signal results
from the fact that the sample pulse is in reality a slug of uniformly
distributed particles in carrier fluid, occupying an initial length of
AL =1 cm in the flow tube. Thus, the effective length of the tube from
sample injection point to sensor varies from L to L + AL for the various
particles in the sample. This effect can be accommodated fairly simply by
defining a second contribution to the width of the measured signal pulse,
AT,, proportional to AL divided by the average particle velocity. Since a
square pulse has a second moment or variance given by the square of the
pulse width divided by 12, we find AT, = (AL/\/12)/(L/{T)). In our case,
AT, = 0055 s.

The last contribution to the variance of the measured signal results
from the distribution of particle size in the sample itself. Figure 4 shows
when particles of different diameters are expected to arrive at the sensor.
If the particles of the sample have a standard deviation of Ad,, then this
would cause a broadening in the arrival time pulse given by AT, =
Ad,(T)»)/8(d,). The slope of the {T) vs d, curve in Fig. 4, evaluated at
d, = 90.7 pm is 9({T)/d(d,) = 0.084 s/ym.

As these three contributions to pulse width are independent, we use the
familiar law that the variance of a random process is given by the sum of
the variances contributed by the components of the process. Thus,

AT = AT? + AT: + AT; (10)
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By using Eq. (10) and the values given above, we can solve for the
standard deviation of our particle size distribution. Thus,

Ad, = (AT% — AT? — AT3)"*/[0(KT>)/0(d,)] (11)

which gives Ad, = 14.6 ym. The standard deviation of the diamzter of the
90.7 um particles quoted by the manufacturer is 14.5 ym.

CONCLUSIONS

The theory presented for the pinch field-flow fractionation mechanism
agrees very well with our experimental findings. We note that the theory
presented contains no fitting factors, but uses only the parameters of the
flow system itself. The theory not only accurately predicts the arrival time
of particles, but also permits the width of the arrival signal to be related to
the particle size distribution.

By varying the system parameters, including carrier fluid density,
average flow velocity, and size of tubing, one can design a fractionation
apparatus to work successfully over a wide range of particle sizes and
densities. This mechanism permits fractionation of particles comparable
to those shown separable using steric FFF techniques. An advantage of
this method is that fractionation occurs more rapidly than with steric
FFF since particles are not forced to the lowest flow velocity regions of
the flow tube, but are instead pinched into a high velocity streamline by
the fluid forces developed in the Hagen-Poiseuille flow tube. In addition,
the apparatus is significantly simpler, since high transverse fields need
not be employed, and in fact may be implemented with a standard flow
injection analysis (FIA) system.

A recent study of heterogeneous samples (e.g., wholie blood) in FIA
systems (/7) has shown that significant errors in chemical analysis can be
made because reproducible dispersion is not maintained due to the
effects of the cells. We suggest that to the extent that red blood cells can be
modeled as rigid spheres, the theory presented herein could be developed
into useful techniques for measuring and correcting for variations in
hematocrit, or determining cell size distributions with very small samples
in FIA systems.
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