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Pinch Field-Flow Fractionation Using Flow 
Injection Techniques 

MARTIN A. AFROMOWITZ and JOHN E. SAMARAS 
DEPARTMENT OF ELECTRICAL ENGINEERING 

SEAITLE, WASHINGTON 98195 
UNIVERSITY OF WASHINGTON, m-I0 

Abstract 

Flow injection techniques have been used almost exclusively for chemical 
analysis of homogeneous samples. On the other hand, field-flow fractionation is 
designed to separate phases in a flowing heterogeneous sample through their 
differing response to applied force fields. In this work we show that controlled 
phase separation can be achieved and successfully modeled in flow injection 
systems. The force that separates the phases is generated intrinsically within the 
flow tube by the inertial effects of the flow itself. 

INTRODUCTION 

The ingenious and varied implementations of field-flow fractionation 
(FFF) introduced by Giddings and his co-workers (1-4) have been used 
to separate particles ranging from submicron up to 100 pm in diameter. 
In the presence of all but the highest transverse fields, the description of 
the dynamics of larger particles in Poiseuille flow is very complicated due 
to the nonlinearity of the Navier-Stokes equation. Low-field steric FFF 
experimental results deviate from theoretical expectations, and an 
anomalous retention factor related to velocity-dependent lift forces was 
invoked (5). Recently, however, theoretical studies by McTigue et al. (6) 
succeeded in explaining the nature of the diverse cross-flow forces 
experienced by rigid particles in plane Poiseuille flow. This recent theory 
is here applied to particle separation in a Hagen-Poiseuille flow. We 
show that the intrinsic drag and lift experienced by large particles in low 
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326 AFROMOWITZ AND SAMARAS 

transverse field environments, such as normal gravitational fields, lead to 
very efficient fractionation with systems compatible with those used in 
flow injection analysis (7). 

BACKGROUND 

The basic approach of field-flow fractionation (FFF) may be sum- 
marized as follows: A dilute separable phase flows through a two- 
dimensional Poiseuille flow channel which features a large aspect ratio to 
permit use of one-dimensional expressions. A field which interacts with 
the separable phase is placed so as to cause drift of that phase in the 
direction parallel to the narrow dimension of the flow channel. The field- 
induced drift causes the separable phase to concentrate, at steady state, 
along one of the broad faces of the channel in a roughly exponential 
profile, whose characteristic exponential distance is given by DIU, where 
D is the diffusivity of the separable phase in the surrounding solvent and 
U is the field-induced average drift velocity of the separable phase. The 
flow in the channel is assumed to be laminar, and therefore the separable 
phase is transported down the channel at different velocities, depending 
upon the velocity of the solvent at the position of the concentrated 
separable phase. Demonstrations of this technique using gravitational, 
centrifugal, electrical, magnetic, cross-flow, thermal, and chemical fields 
have been published (8). 

In all of the following, we consider slow flow in a channel of circular 
cross-section of radius R. The particle density is assumed small enough 
so that the fluid viscosity is not affected. The velocity of the fluid at radius 
r is given in the absence of particles by 

u,(r) = 2(V)(R2 - r Z ) / R Z  (1) 

where (v> is the average flow velocity. 
The interaction of particles and the carrier fluid can yield unexpected 

effects in laminar flow. In the first place, a particle does not move 
downstream (chosen to be the z-direction) at the velocity of the streamline 
at its center (9). In the absence of all other effects, particles lag behind the 
surrounding fluid with the difference in longitudinal velocity, Au,, 
between the fluid at the position of the center of the particle and the 
particle itself, given approximately by (10, 11) 

Av, = (V)(dplR)216 (2) 
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PINCH FIELD-FLOW FRACTIONATION 327 

where dp is the diameter of the particle, and dp << R. 
This relative velocity between fluid and particle can be significantly 

modified if the flow direction is vertical and the particle is not neutrally 
buoyant. In that case, Auz must be augmented or diminished by the 
Stokes settling velocity, 

ug = digApIl8p (3) 

depending on the sense of flow, where g is the acceleration of gravity, A p 
is the difference in density between the particle, pp, and the fluid, pf , and p 
is the viscosity of the fluid. 

The relative longitudinal velocity between fluid and particle gives rise 
to a force on the particle in the radial direction. This effect, discussed 
initially by Saffman (12), forces particles toward the center of the tube if 
the particles lag the fluid, and toward the tube walls if the particles lead 
the fluid. The force increases with the square root of the radial position of 
the particle, rp. Applying the Stokes coefficient to the Saffman force leads 
to the following expression for the radial velocity component attributable 
to this effect: 

us,(rp) = - 0.3427AuZ(r* Re)”ZdplR (4) 

where r* = rp/R, the normalized particle radial position, and where Re is 
the tube Reynolds number, given by Re = p/(V)R/p. In the event that Au, 
is given by Eq. (2), which is appropriate for flow in a horizontal. tube, the 
Saffman velocity is given by 

us,(rp) = -0.0571( V)(r*Re)”2(dplR)3 ( 5 )  

Yet another transverse force has been noted. This force, investigated 
experimentally by Segrk and Silberberg (13) and Aoki et al. (14), was 
described theoretically by Ho and Leal for plane flows (15). The force 
depends on the square of the flow velocity, and in a cylindrical flow tube 
the force is positive (toward increasing radius) for rp less than about 0.6R, 
and negative for rp greater than that value. Thus, the Ho and Leal effect 
pushes particles toward a thin annular region of the tube at a radius of 
about 0 . a .  Aoki called this the tubular pinch effect. 

In the absence of an expression for the Ho and Leal force in Hagen- 
Poiseuille flow, we adapt Ho and Leal’s expression (15) for this transverse 
force from that given for the plane Poiseuille flow situation. In our 
adaptation we imagine the fluid velocity distribution to have the same 
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328 AFROMOWITZ AND SAMARAS 

maximum at the center of both the plane and cylindrical channels, V,,,. 
In the plane flow case, the average flow velocity is equal to 2Vm,,/3. In our 
cylindrical case, ( V )  = Vmax/2. This difference in the definition of the 
average velocity requires that the Ho and Leal expression be modified by 
a factor of (4/3)’. This modification maintains the transverse shear field 
but neglects the curvature of the streamlines. It leads to an approximate 
radial velocity attributable to this force given by 

where 

GI and G2 are themselves functions of r*, and were tabulated by Ho and 
Leal (15). The function H(r*) is shown in Fig. 1. H(0) = 0, an unstable 
point for a particle, and H(r*) < 0 until r* = G2/GI. This occurs at 
approximately r* = 0.6. For larger arguments, H(r*) > 0. 

When a flow tube is placed horizontally, particles carried by the fluid 
in this tube will be moved in the radial direction by both usr and uH,. In 
addition, they will rise or fall vertically in the tube according to the Stokes 

10 
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nc. 1.  The magnitude of the function H(r*) as a function of the normalized tube radius, r*. 
See Eqs. (ha) and (6b) in text. 
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PINCH FIELD-FLOW FRACTIONATION 329 

settling velocity. Within a certain range of system parameters, if the 
particles are denser than the fluid, and if the combined S and H forces are 
strong enough to overcome gravity, the particles will be pinched into a 
narrow crescent region below the center of the tube at r* > 0.6, ultimately 
arriving at an equilibrium normalized radius, r,, directly below the tube 
center. Particles lighter than the fluid will rise to a point above the tube 
center in a similar way. Particles so trapped at r, will be transported 
longitudinally down the tube at the stream velocity less Auz, that is, 

Particles unable to be trapped will eventually be forced against the tube 
wall. 

In contrast to the theory of FFF, we do not explicitly include the effects 
of diffusion caused by Brownian motion of the particles. We limit our 
investigation to large particles for which the diffusive velocity is 
negligible compared to the cross-flow velocities introduced above. 

DISCUSSION 

With regard to the geometry of the flow tube shown in Fig. 2, it is clear 
that the velocity of a particle vp = (upxr u,, upz) is a function of its position 
(xp,yp) within the cross section of the flow tube. Thus, from the equations 
provided above, 

and 

where 

and 
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330 AFROMOWITZ AND SAMARAS 

Velocity profile of i, Hagen-Poiseuille flow 

FIG. 2. Geometry of the flow tube. 

Given any initial position of a particle, say x,  = (xo,yo, zo), the trajectory 
of the particle is obtainable in principle by integration: 

x ( t )  == v,dt + x, I 
The complexity of these equations precludes their integration in closed 
form. Thus, we have integrated them digitally. We seek the time, T,  at 
which a particle initially positioned randomly within the cross section of 
the tube at z = 0 will travel a distance L down the tube. The particle is 
constrained to remain entirely within the tube, therefore rp < R - dp/2.  As 
Twill vary with initial position, we generated a histogram of arrival times 
for particles whose initial positions were uniformly distributed across the 
z = 0 plane. Particles were placed initially on a grid with spacing R/lO, 
the grid being offset R/20 in both the x and y directions from the center of 
the tube. This grid yields 316 starting points within the cylinder on the 
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PINCH FIELD-FLOW FRACTIONATION 331 

z = 0 plane, of which only 158 give unique results due to left-right 
symmetry. Figure 3 shows an example of this histogram of arrival times. 
The parameters used in this calculation are R = 0.0381 cm, L = 231.5 cm, 
p = 0,01018 P, p,= 1.0046 g/cm3, pp = 1.05 g/cm3, and ( V )  = 4.56 cm/s. 
Arrival times are shown for particles of diameters 40,50,60,70,80,90, and 
100 pm. We note that the larger particles arrive earlier, and with a 
narrower distribution compared to the smaller particles. The ordinate of 
the distribution plot is in units of % of particles arriving per %-s time 
interval. Due to the finite number of particles used in our simulation, the 
distributions are not smooth. However, we have calculated the mean 
arrival time ((T)) and the standard deviation (AT,) as a function of 
particle diameter. These results are shown in Figs. 4 and 5. The data 
points shown on these figures will be discussed in the following 
section. 

In order to gain insight into this behavior, we note that the trajectory of 
a particle consists of two phases. In the first phase, the particle moves 
transverse to the flow from its initial position to either r, or to the tube 
wall while at the same time moving downstream at velocities determined 
by the particle's instantaneous radial position. In the second phase, the 
particle is carried downstream at the constant velocity given by Eq. (8c) 
with r* = r, for trapped particles and r* = 1 - (dp/2R) for particles forced 
against the wall of the cylinder. Some particles never achieve the second 

6o I fp=  1°0prn 
c,. I I 

40 

30 
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10 

particle 
arrival 

probabilities 

n " 
40 45 50 55 60 65 

arrival time, sec 

FIG. 3. Calculated arrival distributions for spherical particles of different diameters, dp. The 
flow system parameters are given in the text. 
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I 

40 50 60 70 80 90 100 
particle diameter, pm 

FIG. 4. Mean arrival times, (T) .  for amval distributions shown in Fig. 3. The data point 
shows the mean arrival time for polystyrene particles in a flow system described by the 
given system parameters. The mean diameter of the particles was 90.7 pm according to the 

manufacturer. 

, data 
0 

40 50 60 70 80 90 100 
particle diameter, pm 

FIG. 5. Calculated standard deviations. AT,, of the particle arrival distributions shown in 
Fig. 3. The data point shows the measured standard deviation, AT,,,, of the arrival 

distribution for our 90.7 bm particles. 
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PINCH FIELD-FLOW FRACTIONATION 333 

phase. This latter situation occurs if the combined transverse velocity 
components given by Eqs. (8a) and (8b) are so small that the particle 
doesn’t reach its final radial position before the particle passes z = L. If 
the majority of the particles initially distributed uniformly across the (x, y, 
0) plane never reach the second phase of their trajectory, then the arrival 
distribution will be very broad, approximating the arrival function of the 
carrier fluid itself (16). 

For Re > 1, the Ho and Leal force exceeds the Saffman force for 
r* > 0.6. Therefore, neglecting the Saffman velocity, we can write an  
approximate relationship derived by setting Eq. (8b) equal to zero for a 
particle which has come to its equilibrium radial position along the 
y-axis: 

g ( Y ) R Z  / 

1.908( U2dp H(r,)  2 (9) 

If the right side of this equation is less than about 10, a value of r, may 
be found by reference to Fig. 1. If rm < 1 - (dp/2R), then the particle will 
be trapped by the tubular pinch effect. If the inequality does not hold, or 
if a solution to Eq. (9) cannot be found, then the particle is forced to the 
wall of the tube. 

Equation (9) shows that larger particle diameters lead to smaller values 
of H(r,), which are satisfied by values of r, closer to 0.6. The downstream 
velocity is greater at smaller tube radii, therefore larger particles have a 
larger downstream velocity once they achieve the second phase of their 
trajectory. 

The time necessary to complete the first phase of the trajectory is 
smaller for particles having larger Stokes settling velocity, ug. Thus, for 
particles of a given density, larger particles settle first, and achieve phase 
two more quickly than smaller particles. This affects the width of the 
arrival distribution function, since for particles having different initial 
positions, the variable distance traveled downstream during phase one 
causes the variance in the arrival distribution in the first place. 

One can vary any of the parameters and calculate the resulting 
arrival distributions. One of these possibilities is shown in Fig. 6, 
where the values for R, L, p, pf, and pp are the same as given 
above, dp is set equal to 90.7 pm, and we have chosen ( V )  equal to 
3, 3.5, 4, 4.5, and 5 cm/s. The mean arrival times for these distributions 
are shown in Fig. 7. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



334 

90 

80 

70 

60 

50 

40 

AFROMOWITZ AND SAMARAS 

'. 

\O\ calculation 0 = data 

'. 

.. 

I cV, = 5.0 c d s e c  

30 

arrival I 
probabilities 2o , 

I 

20 30 40 50 60 70 80 90 100 
mival time, sec 

FIG. 6. Calculated arrival distributions for '30.7 pm particles for different average 
velocities. All other system parameters remain the same. 

30 

90 
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70 

60 

50 

40 

' I 

flow 

FIG. 7. Mean arrival times, (T), for particle distributions shown in Fig. 6. The data points 
show the measured mean arrival times for our 90.7 pm polystyrene particles at the indicated 

average flow velocities. 
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PINCH FIELD-FLOW FRACTIONATION 335 

EXPERIMENTAL RESULTS 

Pinch field-flow fractionation experiments were conducted in an 
apparatus shown schematically in Fig. 8. A camer fluid consisting of 
0.9% saline was forced through a substantially horizontal coil of Tygon 
microbore tubing with an inner diameter of 0.762 mm. The flow system 
was held at constant temperature in a water bath. A constant pressure 
drive for the carrier fluid was arranged using a pressurized vessel. 
Samples of polystyrene spheres of approximately 10% by volume were 
prepared in similar saline fluid, with the addition of a small amount of 
detergent. These samples were injected into the flow system using a 
tandem arrangement of solenoid pinch valves operating on silicone 
pinch tubing, which controlled the flow of sample and carrier stream 
through a “n”-shaped injector valve. The injector fitting was machined 
from a small block of clear acrylic plastic, and upon activation of the 
solenoids, a constant sample volume of approximately 5 pL was injected 
into the flow system. 

The particle sensor was placed 231.5 cm down the tube, and consisted 
of a simple ac impedance cell. A frequency of 50 kHz was used, and the 
change in resistance of the fluid moving through the cell was recorded as 
a function of time after sample injection, using a lock-in amplifier to pick 
out the in-phase component of the impedance, and a chart recorder. 
When the cell contained a volume of the nonconducting particles, an 
increased resistance was measured compared to that of the carrier fluid. 

Normally 
h open Micro-bore tubing 

hessurized Chamber 1 7 

Recorder 
To Waste 

FIG. 8. Schematic diagram of experimental system. 
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338 AFROMOWITZ AND SAMARAS 

60 

50 

40 

relative 30 

Changes in cell resistance on the order of 0.005%, corresponding to less 
than 0.1% solids, were routinely measured by this system. 

Figure 9 shows a typical signal (solid curve) from our apparatus, after 
injection of a sample containing polystyrene spheres characterized by the 
manufacturer as having a mean diameter of 90.7 pm. The mean fluid 
velocity was 4.56 cm/s. The signal pulse shown in Fig. 9 is accompanied 
by two calculated particle arrival distributions (dotted curves) reproduced 
from Fig. 3, one for 100 pm particles and the second for 80 pm particles. 
The three curves have been normalized to the same area. Note that the 
parameters used to calculate the distributions shown in Fig. 9 correspond 
to the experimental situation described above. 

The experimental signal in Fig. 9 indicates a mean particle arrival time 
of 43.9 s, which is also shown as the data point on Fig. 4. We note that the 
measured mean arrival time is fairly close to that predicted from our 
theory for 90.7 pm particles. A varialion in any one of the many system 
parameters, or a slight timing error on our chart recorder could be 
responsible for the observed 2.5% discrepancy between measured and 
predicted arrival times. The data points in Fig. 7 show measured mean 
arrival times for these 90.7 pm particles in the same system at different 
values of (0. There is quite a good correspondence between experiment 
and theory. 

Another interesting observation is the fact that the width of the signal 

- 

.. /) 100 l m  

'. 
I j (calculated) 
: I  : I  : I  

: :  ; :  : :  
.. : :  

. .  

RG. 9. Measured arrival distribution (solid curve) for 90.7 pm particles with calculated 
arrival distributions for particles of 100 and 80 pm. All the curves were normalized to equal 

area, and the system parameters reflect the experimental situation. 
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PINCH FIELD-FLOW FRACTIONATION 337 

pulse is much larger than expected for particles of this size. Figure 5 
shows the measured standard deviation of the signal pulse (ATm = 1.27 s) 
obtained at (0 = 4.56 cm/s for 90.7 pm particles superimposed on the 
calculated standard deviation of the arrival time distribution for this 
experimental situation. Analysis of this discrepancy follows. 

ANALYSIS OF SIGNAL PULSE WIDTH 

The variance (square of the standard deviation) of a measured signal 
pulse is caused by three factors. The first is the intrinsic variance which 
results when particles of the same size, but distributed initally in a 
uniform fashion across the (x, y ,  0) plane of the flow tube, settle down to 
r, at different times, thereby arriving at z = L with a characteristic arrival 
width. This intrinsic component of the arrival distribution width was 
calculated previously, and is shown in Fig. 5. For the experimental 
situation under consideration, with dp = 90.7 pm, AT, = 0.33 s. 

The second contribution to the variance of the measured signal results 
from the fact that the sample pulse is in reality a slug of uniformly 
distributed particles in carrier fluid, occupying an initial length of 
AL = 1 cm in the flow tube. Thus, the effective length of the tube from 
sample injection point to sensor varies from L to L + AL for the various 
particles in the sample. This effect can be accommodated fairly simply by 
defining a second contribution to the width of the measured signal pulse, 
AT,, proportional to AL divided by the average particle velocity. Since a 
square pulse has a second moment or variance given by the square of the 
pulse width divided by 12, we find AT, = (AL/dl2) / (L/(T)) .  In our case, 
AT, = 0.055 s. 

The last contribution to the variance of the measured signal results 
from the distribution of particle size in the sample itself. Figure 4 shows 
when particles of different diameters are expected to arrive at the sensor. 
If the particles of the sample have a standard deviation of Ad,, then this 
would cause a broadening in the arrival time pulse given by AT,= 
Ad,d((T))/d(d,). The slope of the ( T )  vs dp curve in Fig. 4, evaluated at 
dp = 90.7 pm is d((T))/d(d,) = 0.084 s/pm. 
As these three contributions to pulse width are independent, we use the 

familiar law that the variance of a random process is given by the sum of 
the variances contributed by the components of the process. Thus, 
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338 AFROMOWITZ AND SAMARAS 

By using Eq. (10) and the values gi.ven above, we can solve for the 
standard deviation of our particle size distribution. Thus, 

Ad, = (AT:  - AT,‘- ATi )”2 / [d ( (T) ) /d (d , ) ]  (11)  

which gives Ad, = 14.6 pm. The standard deviation of the diamzter of the 
90.7 pm particlzs quoted by the manufacturer is 14.5 p m .  

CONCLUSIONS 

The theory presented for the pinch field-flow fractionation mechanism 
agrees very well with our expenmental findings. We note that the theory 
presented contains no fitting factors, but uses only the parameters of the 
flow system itself. The theory not only accurately predicts the arrival time 
of particles, but also permits the width of the arrival signal to be related to 
the particle size distribution. 

By varying the system parameters, including carrier fluid density, 
average flow velocity, and size of tubing, one can design a fractionation 
apparatus to work successfully over a wide range of particle sizes and 
densities. This mechanism permits fractionation of particles comparable 
to those shown separable using steric FFF techniques. An advantage of 
this method is that fractionation occurs more rapidly than with steric 
FFF since particles are not forced lo the lowest flow velocity regions of 
the flow tube, but are instead pinched into a high velocity streamline by 
the fluid forces developed in the Hagen-Poiseuille flow tube. In additim, 
the apparatus is significantly simpler, since high transverse fields need 
not be employed, and in fact may be implemented with a standard flow 
injection analysis (FIA) system. 

A recent study of heterogeneous samples (e.g., whole blood) in FIA 
systems (1 7) has shown that significant errors in chemical analysis can be 
made because reproducible dispersion is not maintained due to the 
effects of the cells. We suggest that to the extent that red blood cells can be 
modeled as rigid spheres, the theory presented herein could be developed 
into useful techniques for measuring and correcting for variations in 
hematocrit, or determining cell size distributions with very small samples 
in FIA systems. 
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